

只有真正的专家才能在任何领域都表现出色。所以巴鲁夫一直在扩大其光电开关的产品种类，更新设计来迎接不同的挑战。

我们把自己看作用户的伙伴和顾问。我们不断的完善和扩展产品的供货范围，所以你会在巴鲁夫找到最合适的解决方案。

最出色的新产品：：
－带示教调整功能的迷你型光电开关 （BOS 6K）
－带示教功能的 M18 外壳光电开关 （BOS 18M）
－激光光电开关 （BOS 26K）
－测距光电开关 （BOD 26K）
－紧凑型高性能光电开关（BOS 36K）
－颜色光电开关
（BFS 28K）
－槽型光电开关（BGL）
如下的产品系列已经被完全改动：BOS 12M， BOS 18E 和 BOS 74K．

2． 0.2 应用实例
2． 0.8 产品总览
2． 0.12 选型向导
2． 0.16 原理，定义

右侧图例是实际应用的简单介绍。由于各种实际应用环境的不同，我们没有提供具体的产品型号。我们的技术支持部门会帮助您找到最好的解决方案。

BOS 18M－．．－1QB－．．．镜面反
射型
BOS R－1反射镜
BOS 18M－．．－ $1 \mathrm{HA}-.$.

检测物体堆放高度

BLS $15 \mathrm{~K}-\ldots$ 发射器 BLE 15K－．．．接收器

引导可移动式工作台

BLE 18M－．．．接收器
BLS 18M－．．．发射器
BOS 18－BL－2 单缝遮光板

镜面反射开关（1）检测是否有盒子。可以对盒子进行计数，或者计算盒子的长度（根据脉冲的持续时间）。漫反射光电开关是带背景消隐功能（背景消隐）的，其检测范围是可调的。这个开关是用来检测传送带上盒子里的物体的。

每对对射型光电开关检测某片物体的高度。开关的安装是依次抬高的。开关的检测距离可以达到几米。如果使用我们提供的遮光板，在坚轴方向上检测精度可以达到

光电开关安装在一定的位置 ，工作台上的工件断开了其光路。当工件被移走进行加工，光路就连通了。光电开关给出一个信号，根据工件

检测一个可读标记

BOS 74K－．．．可调检测距离的基本单元 BF0 74A－．．．光纤

检测一个凹槽

B0S 18M－．．－1PD－．．．可调检测距离的漫反射开关
BF0 18－．．．光纤

可以检测在深色底板上的一个标记（浅色带状）。这里使用了一个光纤式光电开关的基本单元和光纤。

检测轴承垫座上的凹槽，调节带光纤的漫反射开关，使得轴承垫上的凹槽可以一直被检测到。
那个凹槽中断了光线（无反射），开关会改变输出电平。

刀具断裂监控

BLS 18M－．．．发射器 BLE 18M－．．．接收器 BOS 18－BL－2 对射用双缝遮光板

小部件的检测

BOS 18M－．．．可调检测距离的漫反射开关 BOS 18－PK－1 Plano－ conve 镜头带背景消隐的漫反射型

使用 BOS 18－PK－ 1 光学适配器可以消除背景的影响从而检测到小物体。
举例：不管颜色如何，直径 0.1 mm 的螺纹可以被检测到。开关的检测距离可以达到 0 ．． 13 mm 。可以使用带背景消隐功能的漫反射开关。

透明容器中的液位检测

B0S 18M－．．－1PD－．．．漫反射
BFO 18A－．．．
型
光纤

一个带光纤的漫反射型光电开关作为对射型开关来监控透明容器（缸体）的液位。如果在开关检测的高度没有液体，光路就不会中断，然后到达接收器。如果液位足够高，光路会有偏移不能到达接收器，开关的状态会发生翻转。

区分不同的直径

BOS 18M－．．－1HA－．．．漫反射型带背景消隐和可调感应距离的

检测包装内的物品

BLE 18M－．．．接收器
BLS 18M－．．．发射器 BOS $18-$ BL－1 对射用遮光板

松紧度控制

BLE 18M－．．．接收器 BLS 18M－．．．发射器

使用两对对射式开关控制滚筒式传送器的张力。两对对射式开关是上下安装的。当带子的张力处于最佳情况时上端光电开关的光路被切断，下端光电开关的光路是畅通的。如果两条光路都是畅通的，说明需要更多的牵引力。如果两条光路都被切断了，说明材料垂下得太多。

工件定位

BOS 26K－．．－1LHB－．．．激光型带背景消隐和可调开关距离的光电开关
用于检测定位旋转部件上的一条槽。一个带背景消隐的激光型光电开关经过校验可以精确的检测物体的表面。如果光线射到了槽上，会以不同的角度反射回开关。开关将此信号作为背景信号忽略，从而改变开关状态。

BOS 74K－．．．／
BOS 20K－．．．
BFO 74A－．．．／
BF0 D22－．．．
塑料光纤
光纤

一排光电开关来检测传送带上每排小室内的物体。可以将塑料光纤切割到所希望的长度。标准的供货长度是 2米。

工件的外形检测

BOS 74K－．．．／ $\begin{aligned} & \text { 带塑料光纤 } \\ & \text { 的光电开关 }\end{aligned}$
BOS 15K－．．．
BF0 74A－．．．／塑料光纤 BF0 D22－．．．光纤

多对光电开关用来同时检测某一工件的不同外型特征。只有当所有的孔，螺钉的公差和表面质量都符合要求，便可以对工件确认了。这样就避免了后道工序的出错。

凸轮轴上的凸缘检测

BOS 18M－．．－1PD－
可调感应距离的漫反射型开关

BFO 18－．．．光纤
带光纤的漫反射开关用来检测是否存在凸缘。光纤和凸轮轴平行安装。如果凸缘出现了，光路就被切断了，如果没有凸缘，光路就是畅通的。

不合格零件鉴别

BLS 6K－．．．
发射器 BLE 6K－．．．接收器

螺纹检测

BOS $15 \mathrm{~K}-$ ．．／带塑料光纤 BOS 20K－．．．／的光电开关 BOS $74 \mathrm{~K}-$ ．．．基本单元

在准备安装螺母前，需要检测螺母上是否有螺纹。
如果有螺纹，螺纹会反射光线到光纤，然后开关会动作。如果没有螺纹，光线照射到螺母内的光洁表面后不会反射回光纤，开关不会有信号输出。

包装检测

BLS 12M－．．．发射器 BLE 12M－．．．接收器

检测包装是否闭合完好。把对射开关的光路调整到刚刚高过盒子。如果包装没有闭合完好，打开的盖子会阻断光路，对射开关会检测到此种情况。

透明玻璃瓶的计数

BOS 6K－．．．滞后少的镜面反射开关

需要可靠检测吸收很少光线的透明物体时，使用滞后少的镜面反射开关是最好的方案。
使用带示教功能的 BOS 6K 甚至可以在工作时进行校正调节。不再需要中断开关动作来校正开关，可以在运行时进行校正。

BOS 15K 聚焦漫反射型光电开关
BOS 26K 带背景消隐的激光式漫反射型开关

把电路板放置到特定的检测位置，使用聚焦型漫反射开关（1）进行检测。电路板上特定的位置会精确通过光路，这样就保证了最高的精度。激光型漫反射开关（2）的小光斑和背景消隐功能可以检测到电路板上的微小元件。

BKT BOS 26K

色标开关带背景消隐的漫反射光电开关

作为对洗洁精瓶的最终检测，必须检测瓶子是否有标签和
瓶盖。使用色标开关来检测标签。
这个开关可以区分标签和瓶子各自的相对反射率。
使用带背景消隐的漫反射开关来检测瓶盖。
背景消隐的优点是：如果没有瓶盖，瓶口的螺纹会当作背景被忽略。

密封性检测

BOS 26K 带背景消隐的漫反射型光电开关 BOS 18M 带背景消隐的漫反射型光电开关

根据安装环境和开关距离的要求的不同，可以使用很多的带背景消隐功能的漫反射型光电开关。如果安装的空间狭小，BOS 6 K 是理想的选择。如果需要最大的分辩率 BOS 18M 是最理想的。如果需要更远的感应距离，BOS 26 K ，BOS36K 和 B0S 65 K 系列可以满足这个要求。

装配质量检测

BOS 26K 带背景消隐的漫反射型光电开关

使用带背景消隐的漫反射型开关来检测装配步骤是否完成。这些开关精确地检测小的物件，不会因为颜色不同受到影响。使用带背景消隐的激光型光电开关甚至可以检测到更多的细节。

参见开始页
2．1． 2
2．1． 7
2．1． 7
2．1． 7
2．1． 7
2．1． 7
2．1． 7

10．． 30 V DC	10．．． 30 V DC	10．．．30 V DC	10．． 30 V DC	10．．．30 V DC	10．．．30 V DC	10．．． 30 V DC	$\left\lvert\, \begin{gathered} 10 \ldots 30 \mathrm{~V} \mathrm{DC}, \\ 15 \ldots 264 \mathrm{~V} \mathrm{AC} / \mathrm{DC} \end{gathered}\right.$
PNP／NPN \bigcirc / \odot	PNP 推挽电路 ○／	PNP（插头）， PNP／NPN O／	PNP／NPN $\bigcirc / 0$	PNP／NPN \bigcirc / \odot	PNP／NPN \bigcirc / \bigcirc	PNP（插头）， PNP／NPN O／	PNP／NPN／继电器输出 $1 /$
插头	插头	插头／电缆	插头／电缆	插头／电缆	插头／电缆	插头／电缆	插头／电缆
$-15 \ldots+55{ }^{\circ} \mathrm{C}$	$-10 \ldots+60{ }^{\circ} \mathrm{C}$	$-20 \ldots+60{ }^{\circ} \mathrm{C}$	$-15 . .+55{ }^{\circ} \mathrm{C}$	$-15 . .+55{ }^{\circ} \mathrm{C}$			
IP 67	IP 67	IP 66	IP 65	IP 66	IP 67	IP 66	IP 65
红光	红外光	红光	红光	红光	红光	红外光／红光	红外光／红光
M18×108．．． 111 mm	M30×92．．． 108 mm	$13 \times 26 \times 52 \mathrm{~mm}$	$13,5 \times 77 \times 31 \mathrm{~mm}$	$12 \times 68.5 \times 41 \mathrm{~mm}$	$32 \times 20 \times 12 \mathrm{~mm}$	$13 \times 26 \times 52 \mathrm{~mm}$	$50 \times 50 \times 18 \mathrm{~mm}$
同时提供直角型			示教功能，带控制线	各种功能	小尺寸的带示教功能及控制线	2 种外壳类型	带背景消隐功能

2．1． 7
2．1． 34
2．2． 2
2．2． 2
2．2． 2
2．1． 37
2．1． 37
2．1． 46

○／○ 亮通／暗通可选							
系列 外壳材料	BOS 26K 塑料	BOS 26K 激光 塑料	BOD 26K模拟量输出塑料	BOS 35 K 塑料	BOS 36K塑料	BOS 65K 塑料	BKT 色标开关 金属
对射型发射器／接收器	检测范围			8 m	50 m	50 m	
镜面反射型				0．25．．． 8 m			
带偏振滤光镜的镜面反射型	0．．．5．5 m	0．．． 12 m		0．．． 4 m	0．1．．． 8 m	0．3．． 8 m	
漫反射型			45．．． 85 mm （检测范围）	$\begin{gathered} 200 \mathrm{~mm}, \\ 400 \mathrm{~mm} \end{gathered}$	10．． 2000 mm	2000 mm	$\begin{aligned} & 9 \ldots 18 \mathrm{~mm} / \\ & 15 \ldots 30 \mathrm{~mm} \end{aligned}$
聚光式漫反射型							
带背景消隐功能的漫反射型	$\begin{aligned} & 30 \ldots 300 \mathrm{~mm}, \\ & 150 \ldots 600 \mathrm{~mm} \end{aligned}$	30．．． 150 mm			100．．． 500 mm （示教功能）	200．． 1100 mm	
光纤式漫反射型							
光纤式对射型							
供电电压	技术参数 $\text { 10. . . } 30 \mathrm{~V} \text { DC }$	$\text { 10. . . } 30 \mathrm{~V} \text { DC }$	18．．． 28 V DC	10．．． 30 V DC	10．． 30 V DC	$\left\|\begin{array}{c} 10 \ldots 30 \mathrm{~V} \\ 17 \ldots 264 \mathrm{~V} \\ 17 \end{array}\right\|$	10．．．30 V DC
输出类型	PNP／NPN \bigcirc / \bigcirc	PNP／NPN O / \bigcirc	$\begin{aligned} & \text { 模拟量 } \\ & 0 \ldots . .10 \text { V } \end{aligned}$	PNP／NPN \bigcirc / \bigcirc	PNP／NPN \bigcirc / \bigcirc	PNP／NPN／继电器 ○／	PNP／NPN
连接方式	插头	插头	插头／电缆	插头／电缆	插头	接线盒	插头／电缆
工作温度	$-20 \ldots+60{ }^{\circ} \mathrm{C}$	$-15 \ldots+45{ }^{\circ} \mathrm{C}$	$0 \ldots+45{ }^{\circ} \mathrm{C}$	$-15 \ldots+55{ }^{\circ} \mathrm{C}$			
防护等级 per IEC 60529	IP 67	IP 67	IP 67	IP 67	IP 66	IP 67	IP 67
光线类型	红外光／红光	激光（红光）	激光（红光）	红外光／红光	红外光／红光	红外光／红光	红光／绿光
尺寸	$\underset{\mathrm{mm}}{50 \times 50 \times 17}$	$\underset{\mathrm{mm}}{50 \times 50 \times 17}$	$\underset{\mathrm{mm}}{50 \times} \underset{50}{50 \times 17}$	$\underset{\mathrm{mm}}{50 \times} 6$	$\underset{\mathrm{mm}}{50 \times 65 \times 20}$	$\underset{\mathrm{mm}}{32 \times} 85 \times 73$	$\underset{\mathrm{mm}}{31 \times 96.3} \times 58$
特性	背景消隐功能，自动准直功能	背景消隐功能，自动准直功能	$80 \mu \mathrm{~m} / 20 \mu_{\mathrm{m}}$分辨率	全封闭型	示教功能，背景消隐功能，可旋转插头	计时功能，报警输出功能	示教功能，阵列式光源

开始页 e
2．1． 46
2．1． 46
2．2． 18
2．1． 46
2．1． 60
2．1． 60
2．2． 21

		2 mm 固定式	5，10，20，30， 50， $80,120 \mathrm{~mm}$ 固定式				
9．．． 18 mm固定式							
	5 mm						

10．．．30 V DC	10．．． 30 V DC	10．．． 30 V DC	10．．． 30 V DC				
$\begin{gathered} \mathrm{PNP} / \mathrm{NPN} \\ \mathrm{O} /{ }^{\prime} \end{gathered}$	$\begin{gathered} \text { PNP } \\ 0 \end{gathered}$	$\begin{aligned} & \text { PNP /NPN } \\ & 0 / \bullet \end{aligned}$	$\begin{aligned} & \text { PNP /NPN } \\ & 0 / \bullet \end{aligned}$				
插头	插头／电缆	插头	插头				
$-15 . . .+55{ }^{\circ} \mathrm{C}$	$0 \ldots+60^{\circ} \mathrm{C}$	$0 \ldots+55{ }^{\circ} \mathrm{C}$	$-10 \ldots+60^{\circ} \mathrm{C}$				
IP 67	IP 65	IP 65	IP 65				
UV	红光／绿光／蓝胱	红光／绿光	红光				
	$\mathrm{c}_{12 \times 71.5 \times 4.5}^{\mathrm{mm}}$	$\underset{\mathrm{mm}}{20 \times 90} \times 26$	根据具体型号				
示教功能， 耐用型 紫外光－LED	示教功能	一键式 示教功能					

2．2． 23
2．2． 25
2．2． 27
2．2． 29
光电开关
漫反射型
（检测范围的数值是
参考 90% 反射率的柯
达灰度板所得）

OHIUFF	2．0．13

导线颜色

设计符合 DIN IEC
60757

报警输出．．．

（ BOS 15，BOS 18 示教功能 ，BOS 25，BOS 65，BOS 74系列）

模拟量输出

．．．集成在接收器（PNP 型
集电极常开－ 30 mA ）中。接收器带一个报警输出端。当由于污染或者机械位置调整不当导致工作不正常时，就会输出报警信号。在一定时间范围内，如果收到的信号一直处于＂报警范围＂内，就会有报警输出。 BOS 18M 系列带示教功能的和 BOS 65 K 全系列的，包括漫反射，镜面反射，都带报警输

一个带模拟量输出的开关在一定的目标区不进行开关动作。这些开关输出和距离成比例的信号，在感应区域内输出的电压数值是和物体的位置相对应的。

稳

这些传感器的工作原理和带背景消隐的开关原理是一样的。它们在一定范围（测量范围）内输出线性信号。

稳定
（绿色 LED）
稳定
不稳定
稳定
开关间值 $=$

出。

关断延时 ．．．

自动准直

暗通

符合 DIN 44030

导通延时．．．

对射型
\ldots 当靶标离开感应区后，传 还继续输出信号的时间。送效率因子为 0.5 时，开关

发射器和接收器使用共同的镜头。发射的光线通过偏光镜和镜头到达反光板。反光板把光线再反射回传感器。这个功能使得具有自动准直功能的镜面反射型光电开关可以产生一个小的圆光斑。还有一个优点是：
光线接收器
无光线进入
直光线进入
．．．靶标进入感应区域后，传送效率因子为 2 时，开关状

对射型开关由独立的发射器和接收器单元组成，其必须分别安装在光路的两头。任何表面特性的靶标中断光路都会使接收器动作。对射式型是最适合在恶劣环境（比如有垃圾，雾气，油）使用的。检测距离可达到 50

对于开关和反光板不存在感应死区，能更好的检测小物体，靶标的接近方向不影响开关动作。

\qquad动作 \qquad
断开

态翻转需要的反应时间。米。

发射器使用镜头聚焦光线，形成一个小的光斑。聚焦功能和其形成的光斑使得开关可以更好的检测小的物体和一些细节部分。

颜色开关是根据物体颜色来检测识别物体的。这种开关经过调节可以识别具有特定

聚焦

环境光 ．．．

光纤是由玻璃或塑料光纤束做成的，每一束的直径只有 $50 \mu \mathrm{~m}$ ，然后将几百根光纤束捆在一起构成了光纤。光纤的端部是平整的磨光的，符合光学工业标准。单个光纤外部有一层很薄的永久性附着的润滑层，这样就减少了光纤和外壳间的摩擦力。所以即使连续的弯曲光纤，也从来没有发生过光纤断裂现象。可以长时间的保证其传送特性。
光纤的末端装有护套和接头。因此巴鲁夫光纤的防护等级

聚亚安酯外套

- 温度 T $=+85{ }^{\circ} \mathrm{C}$
- 优异的抗化学腐蚀性能
- 良好的柔韧性
- 接触到油和冷却用卤化液不会变脆。

颜色的物体。不同颜色的物体不会产生相同的开关信号。

达到 IP 67 （金属外壳的达到

 IP 65）。潮气和腐蚀性介质不会侵蚀光纤和润滑层，所以光学性能不会受到任何影响。这种设计把轴向拉力均匀的分配到所有的光纤束，保护单根光纤不会被过度拉伸。
波纹金属套管，硅橡胶套管 金属外套

- 温度 $\mathrm{T}=+150{ }^{\circ} \mathrm{C}$
- 符合食品级标准
- 温度 T＝＋250 ${ }^{\circ} \mathrm{C}$
- 极佳的柔韧性
- 防践踏
- 可消毒。

通常镜面反射型开关和带背景消隐功能的漫反射开关会使用聚焦功能。

槽式开关

灰度差值
．．．进入接收器的一部分光线
，但是这部分光线不是由发

槽式光电开关是对射式的，发射器和接收器是相对安装在一个＂U＂型外壳内的。固定式外壳使得安装和电气连接更简便。选择不同的外壳配置可以得到不同的量程。槽口尺寸从 5 mm 到 120 mm 可选。调节内置电位计和遮光

板使得你可以方便地检测小到直径 0.5 mm 的物体。

距离。

这两个开关点间的差值的百分数就是灰度差值。灰度差值越小，开关受颜色的影响也越小。

背景消隐
（HGA）

滞后值 H．．．

柯达灰度板

校正因子

（针对漫反射型）

短路保护

激光，激光保护等级

背景消隐可以使开关在一定范围检测物体时不受反光背景的影响，也使得开关的检测不受被检物体表面材质和颜色的影响。
背景消隐是通过发射器发出的光束和接收器接收光束的交叉来实现的。这使得一部分的光线来自检测区而另一部分光线来自背景。另外的，通过把接受器分成两个相邻部份（比如：双二极管或 PSD
… 光电开关进入和退出感应区时两个开关点的距离。

光电开关的标准感应物体就是柯达灰度板。这是一块有标准反光性能的纸板。板的两面反光性能不同，反光率

对于不同反射特性的物体，可使用右图所示的校正因子来确定其检测范围。

输出导线上的不正常的电压不会导致开关的损坏。加上极性接反保护，开关可以完

单元）和几何排列的办法（三角形法），可以检测到感应范围内被检物体的位置。这两种设计特性使得开关可以可靠地检测到物体，而不受背景的影响。带背景消隐的漫反射开关具有很小的灰度差值以及滞后值。
90% 的一面是用来检测漫反射开关的量程， 18% 的一面用来检测灰度差值。

校正因子

1
$1.2 . \ldots 1.6$
$1.2 . \ldots 1.8$
1
0.6
0.5
0.4
0.3
0.1

物体，表面
纸，白，毛面 $200 \mathrm{~g} / \mathrm{m}^{2}$
金属，光面
锅，黑阳极氧化铝
发泡塑料，白
棉织物，白
PVC，灰
木头，粗糙
纸板，墨，光面
纸板，黑，垫子

全地防止接线错误而导致的损坏。

使用激光保护等级的用处是：通过定义限制值来保护人员不受激光辐射的伤害。基于这个原因，根据不同的的伤害等级，对激光的使用进行了分级。
进行分类的计算方法以及最终限制值在 EN 60825－1／94都有描述。分类是基于输出能量，波长，发射期间的脉冲数，光线开角的综合值。巴鲁夫光电开关的激光防护等级如下：

1 级：无伤害，无须进行保护措施
2 级：低能量，眼皮对激光的反射可以完全地保护眼睛。

1 级和 2 级的设备，可以用眼 员在场。皮反射激光避免长时间目视光束带来的伤害。适当的警示标签必须贴在设备上，有时还需要在使用激光的设备上贴上标签。无需其它机械或光学的保护措施。当使用 1级和 2 级的激光设备时，无须有负责激光伤害保护的人

光作为开关检测的介质…
．．．存在于各种技术领域，以及日常生活的控制应用中。通常开关会处理由目标物体引起的光密度（发射器和接收器之间的）的变化。根据物体的表面特性和光束的特性，光线可能被切断，或者被反射，甚至被散射。一般用脉冲式红外光 LED 作为发射源，光敏三极管作为接收器。由于可见光能很方便的过滤掉，所以输出信号多数是不受环境光影响的。在

光的折射
光线经过不同光密度的介质时，在临界面会改变方向（比如：玻璃／空气），就是发生了折射。折射角度是由两个介质的光密度 n 和相对光轴的入射角度 ε 确定的。
$\sin \varepsilon^{\prime}=\frac{\mathrm{n}}{\mathrm{n}^{\prime}} \sin \varepsilon$
如果一束光线从高密度的介质 n 射入低密度的介质 n^{\prime} ，则折射角 ε^{\prime} 大于入射角 ε 。当入射角为临界角 ε crit 时，折射光线和临界面平行。若入射角大于临界角 ε crit 时，则光线重新返回密度为 n 的介质，这就是全反射。

如果在临界面没有如上所述的全反射，今天的光纤就不会有这种品质。光纤由圆柱形的光导体和薄的外壳构成。光导体的光密度要大于外壳。光线在光导体和外壳间一直是全反射的，光线永远不会在径向离开光导体。理论上这些反射过程中，光线是不会衰减的；然而在光导体上的一些污秽和细微的破损都构成了临界面，会减弱光线以及限制光纤内信息可靠传送的距离。

漫反射型

漫反射型是把发射器和接收器整合在一个外壳内的。开关相对目标物体的朝向要求不是很高。
目标物体（比如 90% 反光率的标准目标）的表面把一部份光线反射回接收器。一旦靶标进入有效的检测区（参见图），开关输出状态就会改变。
检测范围与反射物体的尺寸，形状，颜色和表面特性有关。使用 90% 反光率的柯达灰度

某些应用中，由于红光可见，可以方便的调节，所以使用红光光源的漫反射或对射系统。巴鲁夫提供三类光电开关：
漫反射式，镜面反射式和对射式光电开关。

板（比如白纸），检测范围可达 2 m 。

荧光检测器 能检测物体上看不到的标记，即荧光材料（包括特别的粉 ，墨水，图案等等）只有在紫外光（UV）下可见。荧光材料把不可见的紫外光（UV，短波长，这里是 380 nm ）转化为可见光（蓝光 450 nm 和暗

偏振滤光镜

什么时候需要它？

它们如何工作？
．．．阻隔反射光
\ldots 对高反光率物体的可靠检测

反射系统的发射器发出的一部份光线射到表面发亮的物体上，比如不锈钢，铝或者白铁皮，然后直接反射到接收器。简单的反射系统不能可靠地区分是物体反射还是反光镜反射回来的光。因此会导致错误的检测。巴鲁夫的镜面反射开关是可以和偏

光线是由很多股的＂单束光波＂构成的，所有的光波都是正弦振动的，都是以一根轴为中心传播的。每一个振动方向的光波都是独立的，任何振动方向都有光波（参见图示）。当光线通过一个偏振滤光镜时，只有和隔栅平行的光波可以通过，那些振动方向和隔栅垂直的光波都不能通过。所有其它的偏振面中，只有和隔栅平行的光

在经过偏振滤光镜后，光线的振动方向和偏振面是平行的。这束光线不能通过另一块和其有 90° 旋转夹角的偏振滤光镜。
互成 90° 的偏振滤光镜在镜面反射系统的接收器和发送器前面，这样可以防止物体反射回来的光线使得接收装

另一方面，由三棱镜反射回来的光线，如上所述其偏振面会旋转 90° ，可以不受滤镜的阻碍进入接收器。当高反射率的物体进入检测区时，镜面反射系统的接收器被完全地屏蔽掉其反射光线，这样还是可靠的检测到了这个

红 780 nm ）。这个过程叫荧光检测。
于是这些可见光就可以像平常时一样被接收器检测到。

振滤光镜和巴鲁夫反光板一

起使用，反光板是一块旋光菱镜。这样就提供了一个选择性光栅，可以滤除物体反射回的光，反光板反射回来的光可以自由通过。波部分可以通过。

置误动作。

物体。

反光板

光学三棱镜

以上描述的镜面反射的二维原理也可以用在三棱镜的空间系统，每两个镜片间的夹角都是直角（形成立方体的一个角）。一束光线进入这个系统后，会被三个面完全反射回去，方向和进入的方向平行。
因为三棱镜把入射光线的偏振角度旋转了 90° ，所以

把六个三棱镜安放在一个六角形里，排列成蜂窝状。这些棱镜和光线的角度是没有关系的。棱镜一般由高光密度的塑料制成，注塑成平板或者压制成柔性带。

反射

反射是什么？

全反射．．．

镜面反射．．．

漫反射．．．
．．．高亮度的表面会发生全反
射。入射角和反射角是相同的。（ $\varepsilon_{\mathrm{I}}=\varepsilon_{\mathrm{E}}$ ）。
在理想环境中，反射的光线损失是可以忽略不计的。
… 是由两块互成直角的镜面来实现的。两次反射使得光线的反射方向和入射方向平行。因此所允许的入射角度范围相对的可以更大。
光线在真空中是直线传播的
。碰到物体后，会反弹回来
。根据物体表面的材料特性
，三种反射中的一种会发生：
．．．是由一个粗燥表面作用的，可以用各种反射性能差的物体和各种方向的小镜子来实现。
入射光线碰到此类物体会发散。物体表面颜色越深表面越粗燥反射的损耗也越大。

三棱镜被称为旋光镜。结合使用偏振滤光镜（参见页 2．0．20）－便可以可靠地检测高反光率的物体。

全反射，镜面反射和漫反射。

． 0

镜面反射型的发射器和接收器是整合在一个外壳内的收器。靶标切断了反射光线镜来防止误动作。

检测距离

检测距离 s ．．．

额定检测范围 $\mathrm{Sn} \ldots$

实际检测范围 $\mathrm{Sr} \ldots$

可用开关距离 Su ．．．

盲区．．．

检测范围 Sd．．．

发射器光源
．．．触发开关动作的靶标和光电开关＂感应面＂间的距离 （符合 EN 60947－5－2）。
．．．是忽略各种因素的理想开关距离。比如：忽略了制造误差因素，各种随机因素，外部因素像温度和电压等等。
\ldots 额定电压 U_{e} 时，额定环境下，（ $\mathrm{T}=+23{ }^{\circ} \mathrm{C} \pm 0.5$ ）考虑到制造误差的影响，测得的开关距离。
．．．在定义的电压至温度范围内允许的检测距离（0．80 $\mathrm{Sn} \leq \mathrm{Su} \leq 1.20 \mathrm{Sn}$ 。
．．．是最小检测距离和感应表面的区域，在此区域内物体不能被检测到。
．．．使用标准检测物体时，可以设定到的有效检测范围。

技术参数，总览

	漫反射型					带背景消隐功能型			镜面反射型			对射型			
额定检测距离 Sn	100 mm	200 mm	400 mm	1 m	2 m	120 mm	250 mm	1.1 m	2 m	4 m	8 m	5 m	8 m	16 m	50 m
有效检测距离（ s 的\％）	125	125	125	135	150	135	135	135	150	150	150	150	150	150	150
检测距离滞后（\％）	≤ 20	≤ 20	≤ 25	≤ 15	≤ 15	≤ 1	≤ 1	≤ 1	≤ 10	≤ 10	≤ 10	≤ 15	≤ 15	≤ 15	≤ 15
$\overline{\mathrm{Sn}} / 2$ 处有效的光束直径 $\varnothing(\mathrm{mm})$	20	25	150	300	300	6	10	25	50	100	150				
感应区域的 $\varnothing(\mathrm{mm}$ ）光束直径												8	12	12	20

温漂．．．
（BOS 15，BOS 25，BOS 36， BOS 65，BOS 74 系列）
．．．温度变化应起开关变化值，此值以 Sr 的\％来定量表示。
．．．发射器中断其自身的光线，这时允许对发射器和接收器进行测试。当使用 Test十时，Test－必须为 $0 V$ ，当使用 Test－时，Test＋必须为 $10 \ldots 30 \mathrm{~V}$ 。

每次当在测试输入端加有 10．．．30VDC（Test＋）或者 OV（Test－）时，接收器必须有信号输出。有污染或者光轴调整不正确时，从发射器到接收器的光线会很弱，甚至完全没有。
．．．是光线在介质中传送能力的度量值。
．．．对射系统的圆雉形光束以一个小的角度交叉。被检测物体必须在光束交叉处才能检测到。从这个区域以外的物体反射或漫反射回来的发射光线，接收器是收不到的。利用这个三角形原理，我们可以检测到相对比较小的距离变化值（比如：键槽，键）。被检物体的颜色和形状
．．．为能保证光电开关可靠动作的温度范围，巴鲁夫标准：$-15{ }^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{a}} \leq+55{ }^{\circ} \mathrm{C}$

两根电源线可以被反接，也不会损坏开关。结合短路保护，开关接线错误时可以受到完全的保护。
．．．由于污染和粉尘的影响，使得普通开关或者光纤式开关的额定检测距离减少（相对在纯净空气中的检测距离）。污染和风尘包括：
－污物堆积在棱镜处导致透

明度降低

－对入射光线吸收和进行漫反射。
无油的高压空气可以用来去除污迹以及不纯的空气引起的污染。

定义其为如下值的比值：

- 通过的光通量
- 整个光通量

对反射性能的影响非常小。

漫反射的定义是：光线部份

环境工作温度 ．．．

极性接反保护

（影响检测距离）

因此即使输入测试信号时，也不会有输出信号。这个测试功能给对射型开关提供了遥控检测功能，可以进行预防性检测。

污染指示灯（绿）．．．
［BOS 15，BOS 18 （一部分 ），BOS 25，BOS 44，BOS 65，BOS 74 系列］

污染等级

纯净空气
微量污染
轻度污染
中度污染
重度污染
严重污染

抗震性
机械撞击
根据 EN 60068－2－27

连续震动
根据 EN 60068－2－29

机械震动
根据 EN 600068－2－6
脉冲形状：半正弦波
峰值加速度：
$300 \frac{\mathrm{~m}_{\mathrm{s}}^{2}}{}\left(30 \mathrm{~g}_{\mathrm{n}}\right)$
脉冲周期： 11 ms
每个主轴方向上 3 次震动，一共 18 次震动

脉冲形状：半正弦波峰值加速度 ：
$1000{ }_{\frac{\mathrm{m}^{2}}{2}}(100 \mathrm{gn})$
脉冲周期： 2 ms

频率范围 ：
10．．． 2000 Hz
振幅： 1 mm
（峰一峰值） 122 Hz
30 gn 高于 122 Hz

理想条件
室内相对干净的空气
工具间或储藏室
充满粉尘或蒸汽的场所
检测距离按照因子 $\mathrm{s}=0.5 \mathrm{su}$ 减少
大量的液体，固体碎片落下
光电开关可能不能工作
煤渣落在镜头上
光电开关可能不能工作
．．．当接收光线的强度在
＂开关阈值＂的 $\pm 30 \%$ 以外时
，灯亮表示在＂安全＂范围
内。
＂开关阈值＂表示使信号跳转的值，将其定义为 100% 。因此＂安全＂范围就为：
－输入光线的能量为开关阈值的 130% 或更多
－输入光线的能量为开关阈值
的 70% 或更少。

每个主轴方向上 4000 次，即 ：一共 24， 000 次震动

周期 ：每个位置和方向 20 次

